Points, Copoints, and Colorings

نویسندگان

  • Jonathan Beagley
  • George Mason
چکیده

In 1935, Paul Erdős and George Szekeres were able to show that any point set large enough contains the vertices of a convex k-gon. Later in 1961, they constructed a point set of size 2k−2 not containing the vertex set of any convex k-gon. This leads to what is known as the Erdős-Szekeres Conjecture, that any point set of 2k−2 + 1 points contains the vertices of a convex k-gon. Recently, this famous problem of planar geometry has been transformed into a problem of finding cliques in a graph of copoints. We will discuss results and open problems corresponding to this graph of copoints.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Concerning the shape of a geometric lattice

A well know conjecture states that the Whitney numbers of the second kind of a geometric lattice (simple matroid) are logarithmically concave. We show this conjecture to be equivalent to proving an upper bound on the number of new copoints in the free erection of the associated simple matroid M . A bound on the number of these new copoints is given in terms of the copoints and colines of M . Al...

متن کامل

How many delta-matroids are there?

J. Makowsky and B. Zilber (2004) showed that many variations of graph colorings, called CP-colorings in the sequel, give rise to graph polynomials. This is true in particular for harmonious colorings, convex colorings, mcct-colorings, and rainbow colorings, and many more. N. Linial (1986) showed that the chromatic polynomial χ(G;X) is #P-hard to evaluate for all but three values X = 0, 1, 2, wh...

متن کامل

On the complexity of generalized chromatic polynomials

J. Makowsky and B. Zilber (2004) showed that many variations of graph colorings, called CP-colorings in the sequel, give rise to graph polynomials. This is true in particular for harmonious colorings, convex colorings, mcct-colorings, and rainbow colorings, and many more. N. Linial (1986) showed that the chromatic polynomial χ(G;X) is #P-hard to evaluate for all but three values X = 0, 1, 2, wh...

متن کامل

Perfect $2$-colorings of the Platonic graphs

In this paper, we enumerate the parameter matrices of all perfect $2$-colorings of the Platonic graphs consisting of the tetrahedral graph, the cubical graph, the octahedral graph, the dodecahedral graph, and  the icosahedral graph.

متن کامل

Patch Colorings and Rigid Colorings of the Rational n-Space

We investigate k-colorings of the rational n-space, Q, such that any two points at distance one get distinct colors. Two types of colorings are considered: patch colorings where the colors occupy open sets with parts of their boundary, and rigid colorings which uniquely extend from any open subset of Q. We prove that the existence of a patch k-coloring of Q implies the existence of a k-coloring...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010